Abstract

Granitic rocks (sensulato) are major constituents of upper continental crust. Recent reviews reveal that the average composition of Phanerozoic upper continental crust is granodioritic. Although oceanic arcs are regarded as a site producing continental crust material in an oceanic setting, intermediate to felsic igneous rocks occurring in modern oceanic arcs are dominantly tonalitic to trondhjemitic in composition and have lower incompatible element contents than the average upper continental crust. Therefore, juvenile oceanic arcs require additional processes in order to get transformed into mature continental crust enriched in incompatible elements.Neogene granitoid plutons are widely exposed in the Izu Collision Zone in central Japan, where the northern end of the Izu–Bonin–Mariana (IBM) arc (juvenile oceanic arc) has been colliding with the Honshu arc (mature island arc) since Middle Miocene. The plutons in this area are composed of various types of granitoids ranging from tonalite to trondhjemite, granodiorite, monzogranite and granite. Three main granitoid plutons are distributed in this area: Tanzawa plutonic complex, Kofu granitic complex, and Kaikomagatake granitoid pluton. Tanzawa plutonic complex is dominantly composed of tonalite and trondhjemite and characterized by low concentration of incompatible elements and shows geochemical similarity with modern juvenile oceanic arcs. In contrast, Kofu granitic complex and Kaikomagatake granitoid pluton consists mainly of granodiorite, monzogranite and granite and their incompatible element abundances are comparable to the average upper continental crust. Previous petrogenetic studies on these plutons suggested that (1) the Tanzawa plutonic complex formed by lower crustal anatexis of juvenile basaltic rocks occurring in the IBM arc, (2) the Kofu granitic complex formed by anatexis of ‘hybrid lower crust’ comprising of both basaltic rocks of the IBM arc and metasedimentary rocks of the Honshu arc, and (3) the Kaikomagatake granitoid pluton formed by anatexis of ‘hybrid lower crust’ consisting of K-rich rear-arc crust of the IBM arc and metasedimentary rocks of the Honshu arc. These studies collectively suggest that the chemical diversity within the Izu Collision Zone granitoid plutons reflects the chemical variation of basaltic sources (i.e., across-arc chemical variation in the IBM arc) as well as variable contribution of the metasedimentary component in the source region. The petrogenetic models of the Izu Collision Zone granitoid plutons suggest that collision with another mature arc/continent, hybrid lower crust formation and subsequent hybrid source anatexis are required for juvenile oceanic arcs to produce granitoid magmas with enriched compositions. The Izu Collision Zone granitoid plutons provide an exceptional example of the collision-induced transformation from a juvenile oceanic arc to the mature continental crust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call