Abstract

The solubilization of tricalcium phosphate is often considered as the standard for screening of most phosphate-solubilizing microorganisms (PSMs). However, usually the effect of large-scale application of PSM on the promotion of crop growth varies. This study presents an efficient method for screening and testing phosphate-solubilizing fungus that enhance plant growth. A fungus Penicillium oxalicum I1 (P-I1) was isolated and identified that had high ability of phosphate-solubilization and could utilize maize root exudates as sources, and propagate well in vitro and in soil. P-I1 excreted oxalic acid and reached 593.9 μg/ml, and the pH value was decreased from 6.90 to 1.65 in 26 h. The amount of P-I1 increased by 48-fold in 28 d and was maintained for 49 d in soil. PSM showed selectivity on the transformation of the different forms of phosphorus, a wide range of insoluble phosphates, such as Ca₈H₂(PO₄)₆·5H₂O, AlPO₄, FePO₄, and Ca10(PO₄)₆(OH)₂, were converted to soluble CaHPO₄in soil, and CaHPO₄was also inhibited from being converted into insoluble phosphate by P-I1. The Ca₂-P content reached 27.11 μg/g soil on day 28 at 20°C, which increased by 110.32%, and plant growth promotion was tested and verified, the results showed that maize yield increased remarkably than control after inoculated P-I1, maize yield increased maximum by 14.47%. The data presented that P-I1 appear attractive for exploring their plant growth-promoting activity and potential field application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.