Abstract

The transformation of flexural gravity waves due to wave scattering by heterogeneous boundaries is investigated under the assumption of the linearized water-wave theory. The heterogeneous boundaries include step-type bottom topography as well as heterogeneity in the material property of a floating ice-sheet. By applying the generalized expansion formulae along with the corresponding orthogonal mode-coupling relations, the boundary-value problem (BVP) is reduced to linear system of algebraic equations. The system of equations is solved numerically to determine the full solution of the problem under consideration. Energy relations are derived and used to check the accuracy of the computational results of the scattering problem. Explicit relations for the shoaling and scattering coefficients due to the change in water depth and heterogeneous ice-sheet are derived. These derivations are based on the law of conservation of energy flux under the assumptions of the linearized shallow-water theory. The change in water depth and the structural characteristics of the medium significantly contribute to the change in the scattering and shoaling coefficients and the deflection of the structure. The present results are likely to play a significant role in the analysis of flexural gravity-wave propagation in problems of variable topography for which a direct computational approach is being utilized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call