Abstract
In this work, it was found that the most widely used brominated flame retardant tetrabromobisphenol A (TBrBPA) could be transformed by free chlorine over a wide pH range from 5 to 10 with apparent second-order rate constants from 138 to 3210 M(-1)·s(-1). A total of eight products, including one quinone-like compound (i.e., 2,6-dibromoquinone), two dimers, and several simple halogenated phenols (e.g., 4-(2-hydroxyisopropyl)-2,6-dibromophenol, 2,6-dibromohydroquinone, and 2,4,6-tribromophenol), were detected by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) using a novel precursor ion scan (PIS) approach. A tentative reaction pathway was proposed: chlorine initially oxidized TBrBPA leading to the formation of a phenoxy radical, and then this primary radical and its secondary intermediates (e.g., 2,6-dibromo-4-isopropylphenol carbocation) formed via beta-scission subsequently underwent substitution, dimerization, and oxidation reactions. Humic acid (HA) considerably inhibited the degradation rates of TBrBPA by chlorine even accounting for oxidant consumption. A similar inhibitory effect of HA was also observed in permanganate and ferrate oxidation. This inhibitory effect was possibly attributed to the fact that HA competitively reacted with the phenoxy radical of TBrBPA and reversed it back to parent TBrBPA. This study confirms that chlorine can transform phenolic compounds (e.g., TBrBPA) via electron transfer rather than the well-documented electrophilic substitution, which also have implications on the formation pathway of halo-benzoquinones during chlorine disinfection. These findings can improve the understanding of chlorine chemistry in water and wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.