Abstract
A fully polarimetric radar system consists of an orthogonal dual-polarized transmission mode and a dual-channel receive mode that are typically set to be copolar and cross polar to the transmit state of polarization. The transmit polarization state is switched every pulse repetition time (PRT) between any two orthogonal stales. This paper presents an interpolation technique to construct time series of instantaneous scattering matrices (ISM) from fully polarimetric time series measurements obtained at every PRT from distributed scatterers. It is also shown theoretically that propagation effects need not be removed before transformation. The constructed series of ISMs are then transformed to other polarization bases. The resulting new ISMs are then used to calculate the radar parameters in the new basis. The suggested procedure is studied using data (collected at linear ±45° as well as horizontal and vertical polarization bases) from POLDIRAD, the dual-channel, polarimetric C-band radar operated by the German Aerospace Research Establishment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.