Abstract

Transformation of clay minerals (smectite-zeolite, illite, kaolinite, and bentonite) and admixtures of iron oxides (hydroxides) under the action of an alkaline cyanobacterial community was studied. The results demonstrate that the processes of transformation of clay minerals such as intensification of removal of exchange bases and dissolution of silicates and iron oxides occurred in the presence of the alkaliphilic cyanobacterial community. The main factor that determines resistance of a mineral to biochemical weathering is its composition. Transformations of clay minerals in the course of active cyanobacterial photosynthesis (up to 14 days) and at decomposition of organic matter (OM) (28–60 days) are different. For smectite-zeolite and illite, these processes are dissolution of silicates and oxides (removal of Si and Fe) and removal of exchange bases (K), which were observed at both the of biomass production and OM destruction stages. For two other clays, the processes of neosynthesis are more typical: formation of carbonates (most probably siderite for bentonite clay and Mg-calcite for kaolin clay) and transformation of ferrihydrite into the more thermodynamically stable goethite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.