Abstract

Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis. The long course of treatments on TB with a combination of antibiotics leads unfavorable side effects and poor patient compliance which contributes to sustaining multiple-drug resistant tuberculosis (MDR-TB). Therefore, the development of a new effective drug or synergist to reduce the prevalence of MDR-TB is urgent to date. Cinnamic acid (CA) is a natural occurring phenolic compound with anti-microbial activity. Both trans- and cis-isoforms of CA exist in planta, and cis-cinnamic acid ( c-CA) can be transformed from trans-cinnamic acid ( t-CA) under sunlight. Due to the unavailability of c-CA, the literature regarding the biological functions of c-CA is still limited. We had previously developed a practicable method for the transformation of c-CA from t-CA and the isolation of c-CA. Using the techniques, sufficient c-CA was obtained to evaluate its antituberculosis activity against a MDR M. tuberculosis strain. Moreover, the synergistic effects of c-CA and t-CA with two first-line anti-TB antibiotics, isoniazid (INH) and rifampicin (RIF), were also determined. Although both of c-CA and t-CA decreased the viability of MDR-TB bacilli in a dose-dependent manner, the antituberculosis activity of c-CA was approximately 120-fold of t-CA. Furthermore, the c-CA exhibited higher synergistic effect with INH or RIF against tuberculosis than t-CA. The micrographs of scanning electron microscope (SEM) display that c-CA caused an injury on the out-layer of MDR-TB bacilli. The c-CA might be a potential anti-mycobacterial or synergistic agent that can be developed to against tuberculosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.