Abstract
Chloroform is one of the common disinfection byproducts, which is not susceptible to degradation and poses great health concern. In this study, the chloroform removal efficiencies and contributions of sorption, microbial degradation, plant uptake, and volatilization were evaluated in six model constructed wetlands (CWs). The highest chloroform removal efficiency was achieved in litter-added CWs (99%), followed by planted (46-54%) and unplanted CWs (39%). Mass balance study revealed that sorption (73.5-81.2%) and microbial degradation (17.6-26.2%) were the main chloroform removal processes in litter-added CWs, and that sorption (53.6-66.1%) and plant uptake (25.3-36.2%) were the primary contributors to chloroform removal in planted CWs. Around 60% of chloroform got accumulated in the roots after plant uptake, and both transpiration and gas-phase transport were expected to be the drivers for the plant uptake. Sulfate-reducing bacteria and methanogens were found to be the key microorganisms for chloroform biodegradation through cometabolic dechlorination, and positive correlations were observed between functional genes (dsrA, mcrA) and biodegradation rates. Overall, this study suggests that wetland is an efficient ecosystem for sustainable chloroform removal, and that plant and litter can enhance the removal performance through root uptake and microbial degradation stimulation, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.