Abstract

Reproducible and high-frequency transgenic plant regeneration from callus and embryo axes of four different genotypes of chickpea (Cicer arietinum) was achieved after Agrobacterium-mediated transformation. Three different strains of Agrobacterium (EHA105, AGL1 and LBA4404) harboring the binary vector pCAMBIA1301 containing β-glucuronidase (GUS) and hygromycin phosphotransferase (hpt) genes under the control of a CaMV35S promoter were used. The highest number of transgenic plants was obtained from cotyledonary node-derived calli of genotype Pusa-256. A highly efficient rooting was achieved on Murashige and Skoog medium supplemented with indole-3-butyric acid. The stable integration of the gene was confirmed by molecular analyses of the transformed plants. Inheritance of GUS and hpt gene was followed through two generations and they showed the expected 3:1 inheritance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.