Abstract

Carbon tetrachloride is transformed in aqueous solutions containing dissolved hydrogen sulfide more rapidly in the presence of the minerals biotite and vermiculite than in homogeneous systems. Approximately 80-85% of the CCl4 was transformed to CO2 via the measured intermediate, CS2. Chloroform comprised 5-15% of the products. The remaining 5% of the products were an unidentified non-volatile compound and CO. At 25C, the half-life of CCl4 with 1 mM HS was calculated to be 2600, 160, and 50 days for the homogeneous, vermiculite (114 sq m/L), and biotite (55.8 sq m/L) systems, respectively. The CCl4 transformation rate was found to be dependent on the type and quantity of the solid and the temperature, but was independent of pH and HS(-) concentration above a critical HS(-) concentration. The activation energies (+ or - 95% confidence intervals) were determined to be 122 + or - 32, 91.3 + or - 8.4, and 59.9 + or - 13.3 kJ/mol for the homogeneous, vermiculite, and biotite systems, respectively. The CCl4 transformation rate exhibited first-order behavior with respect to biotite surface area concentration SC(sub biotite) below 55.8 sq m/L. The rate of CCl4 transformation was independent of HS(-) concentration when (HS(-)) = 0.5-4 mM and SC(submore » biotite) = 55.8 sq m/L. Below (HS(-)) = 0.5-4 mM, the rate law was dependent on HS(-) concentration.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call