Abstract

Biotransformation of amorphous calcium carbonate into calcite and other inorganic calcium minerals is a worldwide phenomenon in the bacterial kingdom. In this study, it showed that calcite (CaCO3) could be transformed into an organic mineral earlandite [Ca3(C6H5O7)2·4H2O], through the dissolution of calcite and subsequent crystallization by the fungus Trichoderma asperellum BDH65. Observations by light microscopy showed that the fungal induced crystal particles were deposited as irregularly granular accumulations of micro globular particles. Scanning and transmission electron microscopy revealed that each micro globular particle consists of numerous needle-like crystals with domed end assembling radially with their ends pointing outside from its centers. This is clearly different from the shapes of microsheets formed by the chemical method. The mineral phase of the fungal catalyzed crystals is identified as earlandite, which is chemically identical to calcium citrate tetrahydrate. Structure and properties of the fungal formed crystals are further characterized by Fourier transform infrared spectroscopy and thermogravimetry, showing a similar pattern with those observed for chemically synthesized calcium citrate tetrahydrate. The current result may useful for understanding bioweathering of minerals and rocks, and insight into the calcium cycling driven by fungi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.