Abstract

In this work, transformation of bisphenol A (BPA) alternatives bisphenol AF (BPAF) and bisphenol S (BPS) by manganese dioxide (MnO2) and the effect of iodide (I−) during these processes were investigated in comparison with BPA for the first time. These three bisphenols showed appreciable reactivity towards MnO2 with the half-lives of their loss following the order of BPA < BPAF < BPS under similar conditions, and a higher transformation efficiency was generally obtained at a lower pH. The presence of I− apparently accelerated the transformation of BPAF and BPS by MnO2 at pH ≤ 7 but negligibly affected BPA transformation over the pH range of 5–9. This discrepancy could be well explained by the relative contribution of hypoiodous acid (HOI) in situ formed from I− oxidation by MnO2. Polymers, hydroxylated derivatives, and bond-cleavage products were detected from BPAF and BPS treated by MnO2, where a series of reactions of BPAF/BPS radicals formed from one-electron oxidation of BPAF/BPS were likely involved, similar to the case of BPA reported in literature. A group of iodinated aromatic products were additionally identified from BPAF/BPS treated by MnO2 in the presence of I− (e.g., iodinated BPAF/BPS and iodinated BPAF/BPS dimers), and they could be further transformed. This study suggests that naturally occurring manganese oxides play a significant role in the attenuation of bisphenols released into the environment and the presence of I− can display a great effect on their transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call