Abstract

In this contribution, the electrocatalytic abatement of bisphenol A (BPA) with boron-doped diamond (BDD) anode had been conducted in NaNO2 electrolytes. Central composite design was used as statistical multivariate method to optimize the operating parameters adopted (applied current density, flow rate, concentration of NaNO2 and initial pH). The results from response surface analysis indicated that pH was the most influential factor for TOC decay, and a maximum TOC decay of 63.7% was achieved under the optimized operating conditions (9.04 mA cm−2 of applied current density, 400 mL min−1 of flow rate, 10 mM of NaNO2, 4.0 of initial pH and 60 min of electrolysis time). Besides, LC/MS technique was applied to identify the main reaction intermediates, and plenty of nitrated oligomers were detected at the end of the degradation. These by-products were generated via the coaction of coupling reaction of nitrated phenol and electrophilic substitution mediated by nitrogen dioxide radicals. Moreover, our results showed that the degree of nitration depended heavily on the employed initial nitrite concentration. This was one of the very few investigations dealing with nitrophenolic by-products in nitrite medium, and thus the findings exhibited important implications for electrochemical degradation of BPA and its related phenolic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call