Abstract

Bell states form a complete set of four maximally polarization entangled two-qubit quantum state. Being a key ingredient of many quantum applications such as entanglement based quantum key distribution protocols, superdense coding, quantum teleportation, entanglement swapping etc, Bell states have to be prepared and measured. Spontaneous parametric down-conversion (SPDC) is the easiest way of preparing Bell states and a desired Bell state can be prepared from any entangled photon pair through single-qubit logic gates. In this paper, we present the generation of complete set of Bell states, only by applying unitary transformations of half-wave plate (HWP) on the initial Bell state. The initial Bell state is prepared using a combination of a nonlinear crystal and a beam-splitter (BS) and the rest of the Bell states are created by applying single-qubit logic gates on the entangled photon pairs using HWPs. Our results can be useful in many quantum applications, especially in superdense coding where control over basis of maximally entangled state is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.