Abstract

<p>In the recent few years the topic of accelerated sea ice loss, and related changes in the vertical structure of water masses in the East-Atlantic sector of the Arctic Ocean, including the Barents Sea and the western part of the Nansen Basin, has been in the foci of multiple studies. This region even earned the name the “Arctic warming hotspot”, due to the extreme retreat of sea ice and clear signs of change in the vertical hydrographic structure from the Arctic type to the sub-Arctic one. A gradual increase in temperature and salinity in this area has been observed since the mid-2000s. This trend is hypothetically associated with a general decrease in the volume of sea ice in the Arctic Ocean, which leads to a decrease of ice import in the Barents Sea, salinization, weakening of density stratification, intensification of vertical mixing and an increase of heat and salt fluxes from the deep to the upper mixed layer. The result of such changes is a further reduction of sea ice, i.e. implementation of positive feedback, which is conventionally refereed as the “atlantification. Due to the fact that the Barents Sea is a relatively shallow basin, the process of atlantification might develop here much faster than in the deep Nansen Basin. Thus, theoretically, the hydrographic regime in the northern part of the Barents Sea may rapidly transform to a “Nordic Seas – wise”, a characteristic feature of which is the year-round absence of the ice cover with debatable consequences for the climate and ecosystem of the region and adjacent land areas. Due to the obvious reasons, historical observations in the Barents Sea mostly cover the summer season. Here we present a rare oceanographic data, collected during the late winter - early spring in 2019. Measurements were occupied at four sequential oceanographic surveys from the boundary between the Norwegian Sea and the Barents Sea – the so called Barents Sea opening to the boundary between the Barents Sea and the Kara Sea. Completed hydrological sections allowed us to estimate the contribution of the winter processes in the Atlantic Water transformation at the end of the winter season. Characteristic feature of the observed transformation is the homogenization of the near-to-bottom part of the water column with remaining stratification in the upper part. A probable explanation of such changes is the dominance of shelf convection and cascading of dense water over the open sea convection. In this case, complete homogenization of the water column does not occur, since convection in the open sea is impeded by salinity and density stratification, which is maintained by melting of the imported sea ice in the relatively warm water. The study was supported by RFBR grant # 18-05-60083.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.