Abstract

The objectives of this study were to investigate reactions of calcium with Al2O3 by different model experiments both on the laboratory and on the industrial scale. Experiments with solid Al2O3 and CaO were performed between 1350 °C and 1600 °C. Reaction rate constants were determined based on scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) observations of reaction products and weight measurements of the Al2O3 reacted via dissolution of the CaO bearing phases from the specimens after the annealing period. The results showed that the formation of calcium aluminate phases proceeded rapidly at temperatures greater than 1405 °C when a liquid calcium aluminate was formed. In the lowest temperature range (1350 °C–1405 °C), when the formation of liquid phase ceased, the reaction rate was several orders of magnitude lower. Industrial trials including Ca-alloy injection into steel, sampling and SEM/EDS analyses, as well as an inclusion rating in the samples show the concept of rapid transformation of the alumina inclusions with Ca treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.