Abstract

TNT, or 2,4,6-trinitrotoluene, is a common explosive that can contaminate soil and groundwater in production sites, military training areas, and disposal locations. The compound is highly toxic; therefore, there is an urgent need to rehabilitate the impacted environments. Harnessing the microbial ability to biodegrade TNT into environmentally harmless compound(s) is one approach to remediating contaminated sites. In our study, we report on the genomic and metabolic ability of Stenotrophomonas strain SG1 to degrade TNT under aerobic and anaerobic conditions. The bacterial strain SG1 was first isolated as a contaminant from a culture of Diaphorobacter sp. strain DS2 over minimal media supplemented with TNT. The draft genome assembly of strain SG1 is ∼4.7 Mb and is distributed among 358 contigs. The homology search against the custom database of enzymes responsible for TNT biodegradation revealed the presence of three N-ethylmaleimide reductases (NemA) with a defined KEGG ortholog and KEGG pathway of TNT degradation. The presence of respiratory nitrate reductases has also been mapped, which supports denitrification under anaerobic conditions. Experimentally, the TNT transformation rate accelerated when carbon sources, such as sodium acetate, sodium citrate, sodium succinate, sucrose, and glucose (final concentration of 5 mM), were added. Citrate promoted the highest growth and TNT transformation ratio (88.35%) in 120 h. With the addition of 5 mM ammonium chloride, TNT completely disappeared in the citrate and sucrose-containing treatments in 120 h. However, higher biomass was obtained in the sucrose and glucose-containing treatments in 120 h. During incubation, the formation of amino dinitrotoluene isomers, dinitrotoluene isomers, trinitrobenzene, azoxy isomers, diaryl hydroxylamines, and corresponding secondary amines was confirmed by GC/MS and UPLC/MS. 2-Amino-4-nitrotoluene, 4-amino-2-nitrotoluene, and 2-amino-6-nitrotoluene were also identified in the culture supernatant by GC/MS. Under anaerobic conditions, TNT completely disappeared in the citrate and citrate plus nitrate treatments. Since the strain shows the ability to remove TNT, this research should be useful in basic research and practical applications for removing TNT from wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.