Abstract

Transformation mismatch plasticity is achieved in swaged palladium wires by cyclical hydriding–dehydriding. Upon multiple cycles at ambient temperature, a total strain of ∼40% is accumulated under a constant tensile stress. This value is much higher than the tensile ductility for swaged Pd subjected to monotonic deformation without transformation (<2% for this wire). Strain increments after a single cycle are proportional to the applied stress, in agreement with the Greenwood–Johnson equation for transformation mismatch plasticity. The yield stress of hydrogen-cycled Pd calculated from this equation is 760 MPa, which is much higher than the value of the original wire and about 50% higher than previous values reported for Pd that was hydrogen cycled at 100 °C without an applied stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.