Abstract

In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α transformation kinetics of the grade-2 CP-Ti during continuous cooling was measured and its hot compression behavior was investigated using Gleeble-1500 thermal mechanical simulator. Dynamic CCT diagram confirms that cooling rate has an obvious effect on the start and finishing transformation and microstructures at room temperature. The critical cooling rate for β-phase transforms to α phase is about 15 °C/s. When the cooling rate is higher than 15 °C/s, some β phases with fine granular shape remain residually into plate-like structure. The plate-like α phase forms at cooling rate lower than 2 °C/s, serrate α phase forms at medium cooling rates, about 5-15 °C/s. The flow stress behavior of grade-2 CP-Ti was investigated in a temperature range of 700-900 °C and strain rate of 3.6-40 mm/min. The results show that dynamic recrystallization, dynamic recovery and work-hardening obviously occur during hot deformation. Constitutive equation of grade-2 CP-Ti was established by analyzing the relationship of the deformation temperature, strain rate, deformation degree and deformation resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.