Abstract
Transformation experiments with Escherichia coli recipient cells and linear chromosomal deoxyribonucleic acid (DNA) are reported. E. coli can be rendered competent for DNA uptake by a temperature shock (0 degrees C leads to 42 degrees C leads to 0 degrees C) of the recipient cells in the presence of a high concentration of either Ca2+ or Mg2+ ions. Uptake of DNA into a deoxyribonuclease-resistant form, for which the presence of Ca2+ is essential, was possible during the temperature shock but appeared to occur most readily after the heat shock during incubation at 0 degrees C. When DNA was added to cells that had been heat shocked in the presence of divalent cations only, DNA uptake also occurred. This suggests that competence induction and uptake may be regarded as separate stages. Under conditions used to induce competence, we observed an extensive release of periplasmic enzymes, probably reflecting membrane damage induced during development of competence. After the conversion of donor DNA into a deoxyribonuclease-resistant form, transformants could be selected. It appeared that incubation, before plating, of the transformation mixture in a medium containing high Ca2+ and Mg2+ concentrations and supplemented with all growth requirements increased the transformation frequency. This incubation probably causes recovery of physiologically labile cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.