Abstract

Electromagnetic (EM) pollution becomes more penetrating in daily life and work due to more convenience provided by multi-electrical devices, as does secondary pollution caused by electromagnetic reflection. EM wave absorption material with less reflection is a good solution to absorb unavoidable EM radiation or reduce it from the source. Filled with two-dimensional Ti3SiC2MXenes, silicone rubber (SR)composite demonstrated a good electromagnetic shielding effectiveness of 20 dB in the X band by melt-mixing processes for good conductivity of more than 10-3 S/cm and displayed dielectric properties and a low magnetic permeability; however, the reflection loss was only -4 dB. By the combination of one-dimensional highly electric conductive multi-walled carbon nanotubes (HEMWCNTs) and MXenes, the composites achieved the transformation from electromagnetic inflection to an excellent absorbing performance to reach a minimum reflection loss of -30.19 dB due to electric conductivity of above 10-4 S/cm, a higher dielectric constant, and more loss in both dielectric and magnetic properties. Ni-added multi-walled carbon nanotubes were not able to achieve the transformation. The as-prepared SR/HEMWCNT/MXene composites have potential application prospects in protective layers, which can be used for electromagnetic wave absorption, electromagnetic interference suppression of devices, and stealth of the equipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call