Abstract

► The complex martensite microstructure of free-standing epitaxial Ni–Mn–Ga films. ► A two-stage transformation in the temperature range between 40 °C and 160 °C. ► Temperature dependent mechanical properties of free-standing Ni–Mn–Ga films. ► With increasing temperature, the twinning stress decreases due to thermal activation of twin boundaries. ► Large superplastic strain increases from about 10% at 110 °C to 14% at RT. We analyze the transformation behaviour of a 2 μm thick epitaxial Ni–Mn–Ga film by combining temperature dependent measurements of magnetization, electrical resistance, X-ray diffraction (XRD) and tensile stress–strain characteristics. While the magnetization measurements hint for a simple austenite–martensite transformation below the Curie temperature at about 90 °C, resistivity measurements reveal a two-stage transformation in the temperature regimes (I) of 40–80 °C and (II) of 140–160 °C. XRD and pseudoplastic behaviour prove the presence of martensite well above the Curie point. The combination of four independent methods suggests that the transformation at (II) may originate from a weakly first order transformation followed by an intermartensitic transformation at (I). This interpretation is in line with the large superplastic strain observed for the tensile direction parallel to the [1 0 0] direction of the Ni–Mn–Ga unit cell. The strain increases from about 10% at 110 °C to 14% at room temperature suggesting an increase in tetragonal distortion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call