Abstract

The transformation of Vanadium (V) during thermal conversion of petroleum coke (petcoke) is responsible for ash-related operational problems, such as fouling, corrosion, and deposition. In this paper, The V volatilization behavior and V compounds in ashes were investigated during petcoke gasification at the temperature range of 1100–1500°C. The occurrence modes of V in raw petcoke and their gasification residues were determined using the method of sequential chemical extraction. With increasing gasification temperature, staged volatility of V is observed. From 1100 to 1200°C, almost no gaseous V releases, while it increases from 1300 to 1500°C. It should be noted that the V volatility is strongly dependent on the occurrence modes of V in petcoke. More than 96% of V in three petcoke is associated with organic matter and stable forms. Organic-bound V shows a certain volatile behavior during gasification, and the volatile V species is believed to be VO2(g) according to thermodynamic equilibrium calculations. The stable forms of V are hardly volatilized due to their thermal stability. The residence time has an insignificant effect on V volatility because most volatile organic-bound V has been released rapidly in the initial stage of gasification. During petcoke gasification, the decomposition of organic-bound V enlarges the content of V occurring in water soluble and ion exchangeable, carbonates, and Fe-Mn oxides, which can suppress the volatility of V. Moreover, new thermally stable forms of V are also formed above 1300°C. These forms may be derived from the interaction of V with its coexisting mineral matters during gasification. Crystalline phases of vanadium trioxide (V2O3) and coulsonite (FeV2O4) are clearly present in gasification ashes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call