Abstract

We report on the transformation behaviour of the astable defects labelled EM1 (E c -0.29 eV), EM2 (E c -0.41 eV) and EM3 (E c -0.55 eV) which are induced in n-type silicon by hydrogen implantation. Hydrogen implantation was performed at 88 K with an energy of 90 keV to a dose of 2 × 10 10 cm -2 . After fabrication of Schottky diodes on the implanted surfaces, deep level transient spectroscopy measurements were made to monitor metastable behaviour of defects. All three metastable defects are regenerated with reverse-bias cooling and removed with zero-bias cooling. 10-min isochronal annealing reveals that EM1 is regenerated around 270 K and is removed around 220 K. The EM2 (EM3) regeneration temperature is around 270 K (270 K) and its removal temperature 220 K (260 K). Isothermal annealing treatments for EM1 show that its transformation follows first order kinetics for both regeneration and removal. An activation energy is 0.94 eV and a frequency factor 6 x 10 14 s -1 for regeneration of EM1, and 0.73 eV and 3 × 10 13 s -1 for its removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.