Abstract

Several high-temperature body-centered cubic (bcc) structural materials such as Nb-, Zr- and Ti-based alloys undergo phase separation, which is a second-order phase transformation, whereby the host lattice decomposes into distinct bcc domains with different compositions. Using atomistic simulations, we studied the high-strain-rate response of bcc-forming Nb–xZr (x = 0, 25, 50 at.%) alloys. To induce phase separation in our starter alloy, we first employed hybrid Monte Carlo/Molecular Dynamics simulations in single crystals of Nb–xZr at 1000 K. Subsequently, these crystals were deformed along different crystallographic orientations (⟨001⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle 001\\rangle$$\\end{document}, ⟨110⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle 110\\rangle$$\\end{document} and ⟨111⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle 111\\rangle$$\\end{document}) at a strain rate of 10+8s-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$10^{+8} s^{-1}$$\\end{document}, to investigate orientation dependent mechanical response. The phase-separated Nb–xZr microstructures exhibited distinct bcc domains enriched in either Zr or Nb. Notably, Nb-50 at.%Zr contained coarser Zr-domains compared to Nb-25 at.%Zr. The Zr-rich domains acted as “soft” inclusions, resulting in reduced peak strengths in the following order: pure Nb (Nb-0 at.%Zr) > Nb-25 at.%Zr > Nb-50 at.%Zr. This implies that phase separation causes softening in Nb–xZr. We also discovered two deformation pathways that depended on the crystallographic orientation: (i) For deformation along ⟨110⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle 110\\rangle$$\\end{document} and ⟨111⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle 111\\rangle$$\\end{document} directions: Elastic deformation was followed by dislocation plasticity on {110}⟨111⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\{110\\}\\langle 111\\rangle$$\\end{document} slip systems; and (ii) For deformation along ⟨001⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle 001\\rangle$$\\end{document} direction: Elastic deformation was followed by the formation of a volumetric fcc structure, twinning on {112}⟨111⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle 111\\rangle$$\\end{document} system, and the formation fcc-phase at the twin/matrix interfacial regions. This was ultimately accompanied by dislocation plasticity on {110}⟨111⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\{110\\}\\langle 111\\rangle$$\\end{document} slip system. The bcc→\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rightarrow$$\\end{document}fcc displacive transformation facilitated {112}⟨111⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle 111\\rangle$$\\end{document} twinning when Nb–xZr was deformed along ⟨001⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle 001\\rangle$$\\end{document}. Our investigation shows that softening of bcc alloys can result from a coupling of mechanisms involving local solute segregation, displacive phase transformation and twinning occurring across multiple slip planes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call