Abstract

Production and marketing of “nano-enabled” products for consumer purchase has continued to expand. However, many questions remain about the potential release and transformation of these nanoparticle (NP) additives from products throughout their lifecycle. In this work, two surface coating products advertised as containing ZnO NPs as active ingredients, were applied to micronized copper azol (MCA) and aqueous copper azol (ACA) pressure treated lumber. Coated lumber was weathered outdoors for a period of six months and the surface was sampled using a method developed by the Consumer Product Safety Commission (CPSC) to track potential human exposure to ZnO NPs and byproducts through simulated dermal contact. Using this method, the total amount of zinc extracted during a single sampling event was <1 mg/m2 and no evidence of free ZnO NPs was found. Approximately 0.5% of applied zinc was removed via simulated dermal contact over 6-months, with increased weathering periods resulting in increased zinc release. XAFS analysis found that only 27% of the zinc in the as received coating could be described as crystalline ZnO and highlights the transformation of these mineral phases to organically bound zinc complexes during the six-month weathering period. Additionally, SEM images collected after sampling found no evidence of free NP ZnO release during simulated dermal contact. Both simulated dermal contact experiments, and separate leaching studies demonstrate the application of surface coating solutions to either MCA and ACA lumber will reduce the release of copper from the pressure treated lumber. This work provides clear evidence of the transformation of NP additives in consumer products during their use stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.