Abstract

Selenium (Se) is an essential nutrient for humans and is beneficial for plant growth. To investigate the transformation and bioavailability of Se in tobacco planting soil, selenite and selenate were applied. A pot experiment and sequential extraction scheme were used to investigate the Se contents in different forms in soils treated with Se. A series of equations were applied to model the transformation behavior of Se in this study. The results showed that the forms of selenium were increased significantly by applying the different valence state of water-soluble selenium. The carbonate-bound and iron-manganese (Fe-Mn) oxide–bound species were improved in selenite-added soil, whereas the soluble and exchangeable forms were increased in selenate-added soil. Michaelis-Menten equation fitting results indicated that estimated maximal selenium contents of leaves, stems, and roots in selenate-added soils were 1.83, 15.81, and 20.98 times larger than in selenite-added soils. The utilization levels of selenate were 4.3 to 7.9 times larger than selenite for Nicotiana tabacum L. In conclusion, the bioavailability and mobility of selenate were greater than selenite in Nicotiana tabacum L. planting soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call