Abstract

Abstract. We present a range of airborne in situ observations of biomass burning carbonaceous aerosol over tropical South America, including a case study of a large tropical forest wildfire and a series of regional survey flights across the Brazilian Amazon and Cerrado. The study forms part of the South American Biomass Burning Analysis (SAMBBA) project, which was conducted during September and October 2012. We find limited evidence for net increases in aerosol mass through atmospheric ageing combined with substantial changes in the chemical properties of organic aerosol (OA). Oxidation of the OA increases significantly and rapidly on the scale of 2.5–3 h based on our case study analysis and is consistent with secondary organic aerosol production. The observations of limited net enhancement in OA coupled with such changes in chemical composition imply that evaporation of OA is also occurring to balance these changes. We observe significant coatings on black carbon particles at source, but with limited changes with ageing in both particle core size and coating thickness. We quantify variability in the ratio of OA to carbon monoxide across our study as a key parameter representing both initial fire conditions and an indicator of net aerosol production with atmospheric ageing. We observe ratios of 0.075–0.13 µgsm-3ppbv-1 in the west of our study region over the Amazon tropical forest in air masses less influenced by precipitation and a value of 0.095 µgsm-3ppbv-1 over the Cerrado environment in the east (where sm−3 refers to standard metre cubed). Such values are consistent with emission factors used by numerical models to represent biomass burning OA emissions. Black carbon particle core sizes typically range from mean mass diameters of 250 to 290 nm, while coating thicknesses range from 40 to 110 nm in air masses less influenced by precipitation. The primary driver of the variability we observe appears to be related to changes at the initial fire source. A key lesson from our study is that simply aggregating our observations as a function of atmospheric ageing would have been misleading due to the complex nature of the regional aerosol and its drivers, due to the many conflating and competing factors that are present. Our study explores and quantifies key uncertainties in the evolution of biomass burning aerosol at both near-field and regional scales. Our results suggest that the initial conditions of the fire are the primary driver of carbonaceous aerosol physical and chemical properties over tropical South America, aside from significant oxidation of OA during atmospheric ageing. Such findings imply that uncertainties in the magnitude of the aerosol burden and its impact on weather, climate, health and natural ecosystems most likely lie in quantifying emission sources, alongside atmospheric dispersion, transport and removal rather than chemical enhancements in mass.

Highlights

  • Biomass burning represents a significant source of aerosol particles on the global scale and has a substantial impact on the Earth system

  • For the purposes of our regional analysis, we investigate nine of these flights, which focussed on boundary layer sampling of the regional biomass burning haze

  • For the case study analysis, we identified the smoke plumes manually based on the time series of CO, organic matter (OM) and rBC and determined the ambient background values while sampling outside the smoke plumes for each cross-plume straight-and-level run (SLR) using the same method as the regional-scale analysis

Read more

Summary

Introduction

Biomass burning represents a significant source of aerosol particles on the global scale and has a substantial impact on the Earth system. Rondônia Rondônia Rondônia Rondônia Rondônia Tocantins Rondônia Rondônia Rondônia/Mato Grosso x (Yokelson et al, 2013a); our sampling and method aims to mitigate for such changes as our SLRs are relatively short (10–30 min) and within the atmospheric boundary layer, typically sampling a fairly homogenous haze burden over a single SLR or flight. This limits large changes in mixing plus we manually inspect our time series and background values to identify clear shifts due to changing air masses, e.g. largescale spatial gradients (B734) or wet scavenging (B739), and recalculate background values over shorter flight segments if necessary. We expect uncertainties in the determination of x to be small

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call