Abstract
Based on studies combining experiments and simulations, internally ordered colloidal particles that are able to undergo morphological transformations both in shape and internal structure are presented. The particles are prepared by emulsion solvent evaporation-induced 3D soft confined assembly of di-block copolymer polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP). Control over the solvent selectivity leads to a dramatic change in shape and internal structure for particles. Pupa-like particles of lamellar morphology are obtained when using a non-selective solvent, while patchy particles possessing a plum pudding structure formed when the solvent is selective for PS-block. More interestingly, 3D soft confined annealing drives order-order morphological transformation of the particles. The morphology of reshaped particles can be well controlled by varying the solvent selectivity, annealing time, and interfacial interaction. The experimental results can be explained based on simulations. This study can offer considerable scope for the design of new stimuli-responsive colloidal particles for potential applications in photonic crystal, drug delivery and release, sensor and smart coating, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.