Abstract
The widespread adoption of Transformers in deep learning, serving as the core framework for numerous large-scale language models, has sparked significant interest in understanding their underlying mechanisms. However, beginners face difficulties in comprehending and learning Transformers due to its complex structure and abstract data representation. We present TransforLearn, the first interactive visual tutorial designed for deep learning beginners and non-experts to comprehensively learn about Transformers. TransforLearn supports interactions for architecture-driven exploration and task-driven exploration, providing insight into different levels of model details and their working processes. It accommodates interactive views of each layer's operation and mathematical formula, helping users to understand the data flow of long text sequences. By altering the current decoder-based recursive prediction results and combining the downstream task abstractions, users can deeply explore model processes. Our user study revealed that the interactions of TransforLearn are positively received. We observe that TransforLearn facilitates users' accomplishment of study tasks and a grasp of key concepts in Transformer effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on visualization and computer graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.