Abstract

BackgroundVolatile pyrethroids (VPs) are proven to reduce human–vector contact for mosquito vectors. With increasing resistance to pyrethroids in mosquitoes, the efficacy of VPs, such as transfluthrin, may be compromised. Therefore, experiments were conducted to determine if the efficacy of transfluthrin eave-positioned targeted insecticide (EPTI) depends on the resistance status of malaria vectors.MethodsRibbons treated with 5.25 g transfluthrin or untreated controls were used around the eaves of an experimental hut as EPTI inside a semi-field system. Mosquito strains with different levels of pyrethroid resistance were released simultaneously, recaptured by means of human landing catches (HLCs) and monitored for 24-h mortality. Technical-grade (TG) transfluthrin was used, followed by emulsifiable concentrate (EC) transfluthrin and additional mosquito strains. Generalized linear mixed models with binomial distribution were used to determine the impact of transfluthrin and mosquito strain on mosquito landing rates and 24-h mortality.ResultsEPTI treated with 5.25 g of either TG or EC transfluthrin significantly reduced HLR of all susceptible and resistant Anopheles mosquitoes (Odds Ratio (OR) ranging from 0.14 (95% Confidence Interval (CI) [0.11–0.17], P < 0.001) to 0.57, (CI [0.42–0.78] P < 0.001). Both TG and EC EPTI had less impact on landing for the resistant Anopheles arabiensis (Mbita strain) compared to the susceptible Anopheles gambiae (Ifakara strain) (OR 1.50 [95% CI 1.18–1.91] P < 0.001) and (OR 1.67 [95% CI 1.29–2.17] P < 0.001), respectively. The EC EPTI also had less impact on the resistant An. arabiensis (Kingani strain) (OR 2.29 [95% CI 1.78–2.94] P < 0.001) compared to the control however the TG EPTI was equally effective against the resistant Kingani strain and susceptible Ifakara strain (OR 1.03 [95% CI 0.82–1.32] P = 0.75). Finally the EC EPTI was equally effective against the susceptible An. gambiae (Kisumu strain) and the resistant An. gambiae (Kisumu-kdr strain) (OR 0.98 [95% CI 0.74–1.30] P = 0.90).ConclusionsTransfluthrin-treated EPTI could be useful in areas with pyrethroid-resistant mosquitoes, but it remains unclear whether stronger resistance to pyrethroids will undermine the efficacy of transfluthrin. At this dosage, transfluthrin EPTI cannot be used to kill exposed mosquitoes.

Highlights

  • Volatile pyrethroids (VPs) are proven to reduce human–vector contact for mosquito vectors

  • Transfluthrin-treated eave-positioned targeted insecticide (EPTI) could be useful in areas with pyrethroid-resistant mosquitoes, but it remains unclear whether stronger resistance to pyrethroids will undermine the efficacy of transfluthrin

  • The objectives of this study were to determine (1) the efficacy of transfluthrin applied as EPTI to reduce human landing rate (HLR) of multiple strains of Afrotropical malaria vectors with varying levels of pyrethroid resistance and (2) delayed mortality induced by EPTI exposure

Read more

Summary

Introduction

Volatile pyrethroids (VPs) are proven to reduce human–vector contact for mosquito vectors. With increasing resistance to pyrethroids in mosquitoes, the efficacy of VPs, such as transfluthrin, may be compromised. Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are currently the core mosquito vector control tools employed in national malaria control programmes worldwide [1]. Increased transmission in some areas where elimination was considered to be feasible has been observed [4, 5]. This increase is likely caused by insufficient coverage and use of core interventions, with fewer than half of households in subSaharan Africa owning enough nets for all occupants [3]. The development of physiological resistance [7] in mosquito vectors may undermine the continued efficacy of IRS and LLINs [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call