Abstract

The environmental effects of the depletion of stratospheric ozone due to refrigerants containing chlorine, have resulted in international treaties, laws and amendments (Copenhagen, 1992, to the Montreal protocol, 1987) to phase out and eliminate many common refrigerants. HCFC22 is one of these refrigerants and no such single component alternative has been discovered for this fluid. Zeotropic refrigerant mixtures (binary or ternary) are being considered as potential replacements for HCFC22. Evaporation and condensation heat-transfer characteristics, and inside tubes of heat exchangers, due to the use of zeotropic refrigerant mixtures, have been a subject of fundamental importance in evaluating the heat exchanger performances in the refrigeration and air-conditioning industry. In this study, it is proposed to determine the heat transfer and pressure drop coefficients during in-tube condensation of zeotropic mixture HFC23/HFC134a in a smooth copper tube with an inside diameter of 8.92 mm. The test section of three passes of 2 m each; it is a counter flow double-pipe heat exchanger with water flowing in the annulus and refrigerant in the inner tube. This test section is instrumented with temperature and pressure sensors. We have tested HCFC22, HFC134a, and three refrigerant mixtures of HFC23/HFC134a at different compositions to appreciate the effect of glide on heat transfer. The quality was from 1 to 80%, the heat flux ranged from 2 to 50 kW m −2 and mass flux varied from 80 to 480 kg m −2s −1. In these conditions, no effect of a glide on the heat-transfer coefficient was observed; this result was confirmed by using an equilibrium condensation curve analysis. The pressure drop can be calculated with classical correlations but with physical properties of the mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.