Abstract

The proposition that the 2-amino group of guanine plays a critical role in determining how antibiotics recognise their binding sites in DNA has been tested by relocating it, using tyrT DNA derivative molecules substituted with inosine plus 2,6-diaminopurine (DAP). Irrespective of their mode of interaction with DNA, such GC-specific antibiotics as actinomycin, echinomycin, mithramycin and chromomycin find new binding sites associated with DAP-containing sequences and are excluded from former canonical sites containing I.C base pairs. The converse is found to be the case for a group of normally AT-selective ligands which bind in the minor groove of the helix, such as netropsin: their preferred sites become shifted to IC-rich clusters. Thus the binding sites of all these antibiotics strictly follow the placement of the purine 2-amino group, which accordingly must serve as both a positive and negative effector. The footprinting profile of the 'threading' intercalator nogalamycin is potentiated in DAP plus inosine-substituted DNA but otherwise remains much the same as seen with natural DNA. The interaction of echinomycin with sites containing the TpDAP step in doubly substituted DNA appears much stronger than its interaction with CpG-containing sites in natural DNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.