Abstract

ocation-based social networks (LBSNs) are one kind of online social networks offering geographic services and have been attracting much attention in recent years. LBSNs usually have complex structures, involving heterogeneous nodes and links. Many recommendation services in LBSNs (e.g., friend and location recommendation) can be cast as link prediction problems (e.g., social link and location link prediction). Traditional link prediction researches on LBSNs mostly focus on predicting either social links or location links, assuming the prediction tasks of different types of links to be independent. However, in many real-world LBSNs, the prediction tasks for social links and location links are strongly correlated and mutually influential. Another key challenge in link prediction on LBSNs is the data sparsity problem (i.e., problem), which can be encountered when LBSNs branch into new geographic areas or social groups. Actually, nowadays, many users are involved in multiple networks simultaneously and users who just join one LBSN may have been using other LBSNs for a long time. In this paper, we study the problem of predicting multiple types of links simultaneously for a new LBSN across partially aligned LBSNs and propose a novel method TRAIL (TRAnsfer heterogeneous lInks across LBSNs). TRAIL can accumulate information for locations from online posts and extract heterogeneous features for both social links and location links. TRAIL can predict multiple types of links simultaneously. In addition, TRAIL can transfer information from other aligned networks to the new network to solve the problem of lacking information. Extensive experiments conducted on two real-world aligned LBSNs show that TRAIL can achieve very good performance and substantially outperform the baseline methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call