Abstract

Quantum spin chains may be used to transfer quantum states between elements of a quantum information processing device. A scheme discovered recently \cite{BFR+12} was shown to have favorable transfer properties for ingle-qubit states even in the presence of built-in static disorder caused by manufacturing errors. We extend that scheme in a way suggested already in \cite{BFR+12} and study the transfer of the four Bell states which form a maximally entangled basis in the two-qubit Hilbert space. We show that perfect transfer of all four Bell states separately and of arbitrary linear combinations may be achieved for chains with hundreds of spins. For simplicity we restrict ourselves to systems without disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.