Abstract

Genetic variation in wheat is needed to address global food security challenges, particularly as climates change. Crop wild relatives are unique reservoirs of useful alleles for crop improvement and are important components of genebank collections. We analyzed how the derivatives of ‘goat grass’ (Aegilops tauschii) have been used to widen the genetic base for wheat breeding and surveyed wheat breeders to elicit adoption estimates. Synthetic hexaploid wheat (SHW) is derived by crossing goat grass with durum wheat, serving as a bridge to transfer desirable traits into modern varieties of bread wheat. Our data show that wheat scientists used 629 unique accessions from 15 countries for pre-breeding, producing 1577 primary SHWs. These derivatives represented 21% of the germplasm distributed by the genebank of the International Maize and Wheat Improvement Center between 2000 and 2018. Over the period, more than 10,000 samples of SHW were sent to 110 institutions in 40 countries, with rising numbers of synthetic hexaploid-derived lines (SHDL) included in international nurseries. Lines were screened for major diseases of wheat. At least 86 varieties have been selected from SHDL and released in 20 countries. Survey estimates indicate the highest scale of adoption in southwest China and India, with 34% and 7% of reported wheat area, respectively. These varieties demonstrate resistance to pests and pathogens, high yield potential, good quality attributes, and suitability for biofortified wheat.

Highlights

  • Changes in climate and human society pose immense challenges for global food security

  • Singh et al (2018) used genotypic data to demonstrate a large number of duplicates among Aegilops tauschii collections in the Punjab Agricultural University, Wheat Genetic Resources Center (WGRC) at Kansas State University (KSU), and CIMMYT genebanks

  • We traced the path of wild germplasm from the genebank through its incorporation by pre-breeding into varieties released and adopted by farmers

Read more

Summary

Introduction

Changes in climate and human society pose immense challenges for global food security. The world population is expected to reach 9.3 billion by the year 2050 with a doubling of global food demand (Barrett 2010; Dempewolf et al 2014; Zhang et al 2017). International Center for Agricultural Research in the Dry Areas (ICARDA) and University Mohammed V, Rabat, Morocco. Lobell et al (2011) reported that climate change slowed yield growth trends in wheat from 1980 to 2008. By 2080, the predicted increase of drought and extreme temperatures are expected to cause yield losses of 10–30% (Kumar et al 2013). Diseases and insect pathogens cause considerable yield loss and new, more virulent races and biotypes are threatening global wheat production (Bahrani and Hagh Joo 2011)

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call