Abstract

In-hand manipulation of objects is an important capability to enable robots to carry-out tasks which demand high levels of dexterity. This work presents a robot systems approach to learning dexterous manipulation tasks involving moving objects to arbitrary 6-DoF poses. We show empirical benefits, both in simulation and sim - to- real transfer, of using keypoint-based representations for object pose in policy observations and reward calculation to train a model-free reinforcement learning agent. By utilizing domain randomization strategies and large-scale training, we achieve a high success rate of 83 % on a real TriFinger system, with a single policy able to perform grasping, ungrasping, and finger gaiting in order to achieve arbitrary poses within the workspace. We demonstrate that our policy can generalise to unseen objects, and success rates can be further improved through finetuning. With the aim of assisting further research in learning in-hand manipulation, we provide a detailed exposition of our system and make the codebase of our system available, along with checkpoints trained on billions of steps of experience, at https://s2r2-ig.github.io

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call