Abstract
Iron uptake by transferrin from triacetohydroxamatoFe(III) (Fe(AHA)3) in the presence of bicarbonate has been investigated between pH 7 and 8.2. The protein transits from the opened apo- to the closed holoform by several steps with the accumulation of at least three kinetic intermediates. All these steps are accompanied by proton losses, probably occurring from the protein ligands and the side-chains involved in the interdomain H-bonding nets. The minor bihydroxamatoFe(III) species Fe(AHA)2 exchanges its iron with the C-site of apotransferrin in interaction with bicarbonate without detectable formation of any intermediate protein-iron-ligand mixed complex; direct second-order rate constant k1 = 4.15(±0.05) × 107 M−1 s−1. The kinetic product loses a single proton and undergoes a modification in its conformation followed by the loss of two or three protons; first-order rate constant k2 = 3.25(±0.15) s−1. This induces a new modification in the conformation; first-order rate constant k3 = 5.90(±0.30) × 10−2 s−1. This new modification in conformation rate controls iron uptake by the N-site of the protein and is followed by a single proton loss; K3a = 6.80 nM. Finally, the holoprotein or the monoferric transferrin in its thermodynamic equilibrated state is produced by a last modification in the conformation occurring in about 4000 seconds. But for the Fe(AHA)3 dissociation and the involvement of Fe(AHA)2 in the first step of iron uptake, this mechanism is identical to that reported for iron uptake from FeNAc3. This implies that the exchange of iron between a chelate and serum-transferrin occurs by a single general mechanism. The nature of the iron-providing chelate is only important for the first kinetic step of the exchange, which can be slowed to such an extent that it rate limits the exchange of iron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.