Abstract
The objective of this study is to achieve the enhanced delivery of 5-fluorouracil to brain through transferrin-coupled liposomes. 5-Fluorouracil-loaded liposomes were prepared by cast film method and characterized for particle size, shape, percent encapsulation efficiency and in vitro drug release. Biodistribution studies were carried out with the help of radiolabelled 5-fluorouracil. 5-Fluorouracil was labelled with 99mTc-DTPA by oxidation–reduction method using stannous chloride and optimized for labelling parameters to get a high labelling efficiency. The in vitro stability was determined to check the efficiency of a system to find out the suitability of the radiolabelled system for in vivo studies. 99mTc-DTPA-labelled 5-fluorouracil bearing non-coupled and coupled liposomes were administered intravenously and biodistribution studies were performed. The distribution of 5-fluorouracil via non-coupled and coupled liposomes was determined in various organs, such as lungs, liver, kidneys, spleen and brain, by measuring the radioactivity using a gamma scintillation unit. The results of in vivo studies confirmed a selective uptake of the transferrin-coupled liposomes from the brain capillary endothelial cells. An average of 10-fold increase in the brain uptake of the drug was observed after the liposomal delivery of 5-fluorouracil, while the transferrin-coupled liposomes caused a 17-fold increase in the brain uptake of 5-fluorouracil.Therefore, it can be concluded that transferrin-coupled liposomes enhance the brain uptake of the drug, like 5-fluorouracil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.