Abstract

Abstract Most optoelectronic devices are based on III-V semiconductors such as the InP/InGaAsP material system. Solid state refrigerators based on the same material system can be monolithically integrated with optoelectronics. Thermionic emission cooling in InGaAsP-based heterostructures has been shown experimentally to provide cooling power densities of several 100 W/cm2. Cooling by several degrees across thin films on the order of a micron thick has been demonstrated. Thermionic emission of hot electrons over heterobarriers allows for enhanced cooling power beyond what is possible from the bulk thermoelectric properties. The thermal resistance of the InP substrate between the hot side of the thin film cooler and the heat sink is found to be a limitation in cooler performance. Several possibilities are examined for replacing the InP substrate with a higher thermally conducting one such as silicon, copper, or even diamond, and a process for substrate transfer to a thin copper film has been developed. Three-dimensional simulations predict an order of magnitude improvement in the thermal resistance of the substrate. Experimental results of packaged InGaAsP coolers with copper substrates will be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call