Abstract

Transferable high dimensional neural network potentials (HDNNPs) have shown great promise as an avenue to increase the accuracy and domain of applicability of existing atomistic force fields for organic systems relevant to life science. We have previously reported such a potential (Schrödinger-ANI) that has broad coverage of druglike molecules. We extend that work here to cover ionic and zwitterionic druglike molecules expected to be relevant to drug discovery research activities. We report a novel HDNNP architecture, which we call QRNN, that predicts atomic charges and uses these charges as descriptors in an energy model that delivers conformational energies within chemical accuracy when measured against the reference theory it is trained to. Further, we find that delta learning based on a semiempirical level of theory approximately halves the errors. We test the models on torsion energy profiles, relative conformational energies, geometric parameters, and relative tautomer errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.