Abstract

Memristors, often comprising an insulating metal oxide film between two metal electrodes (MIM), constitute a class of two-terminal devices that possesses tunable variations in resistance based on the applied bias history. Intense research remains focused on the metal-insulator interface, which serves as the crux of coupled electronic-ionic interactions and dictates the underpinning transport mechanisms at either electrode. Top-down, ultrahigh-vacuum (UVH) deposition approaches for MIM nanostructures yield highly crystalline, heteroepitaxial interfaces but limit the number of electrode configurations due to a fixed bottom electrode. Here we report on the convective self-assembly, removal, and transfer of individual nanoribbons comprising solution-processed, single-crystalline strontium titanate (STO) perovskite oxide nanocrystals to arbitrary metallized substrates. Nanoribbon transferability enables changes in transport models ranging from interfacial trap-detrap to electrochemical metallization processes. We also demonstrate the endurance of memristive behavior, including switching ratios up to 104, after nanoribbon redeposition onto poly(ethylene terephthalate) (PET) flexible substrates. The combination of ambient, aerobic prepared nanocrystals and convective self-assembly deposition herein provides a pathway for facile, scalable manufacturing of high quality, functional oxide nanostructures on arbitrary surfaces and topologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.