Abstract

LiF-NaF-ZrF4 multicomponent molten salts are promising candidate coolants for advanced clean energy systems owing to their desirable thermophysical and transport properties. However, the complex structures enabling these properties, and their dependence on composition, is scarcely quantified due to limitations in simulating and interpreting experimental spectra of highly disordered, intermediate-ranged structures. Specifically, size-limited ab initio simulations and accuracy-limited classical models used in the past are unable to capture a wide range of fluctuating motifs found in the extended heterogeneous structures of liquid salt. This greatly inhibits our ability to design tailored compositions and materials. Here, accurate, efficient, and transferable machine learning potentials are used to predict structures far beyond the first coordination shell in LiF-NaF-ZrF4. Neural networks trained at only eutectic compositions with 29% and 37% ZrF4 are shown to accurately simulate a wide range of compositions (11-40% ZrF4) with dramatically different coordination chemistries, while showing a remarkable agreement with theoretical and experimental Raman spectra. The theoretical Raman calculations further uncovered the previously unseen shift and flattening of bending band at ∼250 cm-1 which validated the simulated extended-range structures as observed in compositions with higher than 29% ZrF4 content. In such cases, machine learning-based simulations capable of accessing larger time and length scales (beyond 17 Å) were critical for accurately predicting both structure and ionic diffusivities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.