Abstract

Several semiempirical tight-binding models are parametrized and tested for aluminum clusters and nanoparticles using a data set of 808 accurate AlN (N = 2-177) energies and geometries. The effects of including overlap when solving the secular equation and of incorporating many-body (i.e., nonpairwise) terms in the repulsion and electronic matrix elements are studied. Pairwise orthogonal tight-binding (TB) models are found to be more accurate and their parametrizations more transferable (for particles of different sizes) than both pairwise and many-body nonorthogonal tight-binding models. Many-body terms do not significantly improve the accuracy or transferability of orthogonal TB, whereas some improvement in the nonorthogonal models is observed when many-body terms are included in the electronic Hamiltonian matrix elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call