Abstract

Germanium manganese compounds exhibit a variety of stable and metastable phases with different stoichiometries. These materials entail interesting electronic, magnetic, and thermal properties both in their bulk form and as heterostructures. Here, we develop and validate a transferable machine learning potential, based on the high-dimensional neural network formalism, to enable the study of MnxGey materials over a wide range of compositions. We show that a neural network potential fitted on a minimal training set reproduces successfully the structural and vibrational properties and the thermal conductivity of systems with different local chemical environments, and it can be used to predict phononic effects in nanoscale heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.