Abstract
During the past few decades, there have been two parallel streams of driving behavior research: models using trajectory data collected from the field (using video recordings, GPS, etc.) and models using data from driving simulators (in which the behavior of the drivers is recorded in controlled laboratory conditions). Although the former source of data is more realistic, it lacks information about the driver and is typically not suitable for testing effects of future vehicle technologies and traffic scenarios. In contrast, driving behavior models developed with driving simulator data may lack behavioral realism. However, no previous study has compared these two streams of mathematical models and investigated the transferability of the models developed with driving simulator data to real field conditions in a rigorous manner. The current study aimed to fill this research gap by investigating the transferability of two car-following models between a driving simulator and two comparable real-life traffic motorway scenarios, one from the United Kingdom and the other one from the United States. In this regard, stimulus–response–based car-following models were developed with three microscopic data sources: ( a) experimental data collected from the University of Leeds driving simulator, ( b) detailed trajectory data collected from UK Motorway 1, and ( c) detailed trajectory data collected from Interstate 80 in California. The parameters of these car-following models were estimated by using the maximum likelihood estimation technique, and the transferability of the models was investigated by using statistical tests of parameter equivalence and transferability test statistics. Estimation results indicate transferability at the model level but not fully at the parameter level for both pairs of scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.