Abstract

In order to deal with ambiguous image appearances in cell segmentation, high-level shape modeling has been introduced to delineate cell boundaries. However, shape modeling usually requires sufficient annotated training shapes, which are often labor intensive or unavailable. Meanwhile, when applying the model to different datasets, it is necessary to repeat the tedious annotation process to generate enough training data, and this will significantly limit the applicability of the model. In this paper, we propose to transfer shape modeling learned from an existing but different dataset (e.g. lung cancer) to assist cell segmentation in a new target dataset (e.g. skeletal muscle) without expensive manual annotations. Considering the intrinsic geometry structure of cell shapes, we incorporate the shape transfer model into a sparse representation framework with a manifold embedding constraint, and provide an efficient algorithm to solve the optimization problem. The proposed algorithm is tested on multiple microscopy image datasets with different tissue and staining preparations, and the experiments demonstrate its effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.