Abstract

A new method was developed for rapid genotypic identification and classification of bacteria. The method is based on high resolution gel electrophoresis of the stable, low molecular weight (LMW) RNA fraction of single bacterial strains. This fraction comprises the total transfer RNA pool and the 5S ribosomal RNA. On a one-dimensional gel, every eubacterial strain exhibited a distinct LMW RNA profile, a set of bands belonging to three different size classes: 5S rRNAs (110–131 nt), class 2 tRNAs (82–96 nt) and class 1 tRNAs (72–79 nt). LMW RNA profiles of members of five of the ten major eubacterial groups, previously defined by 16S rRNA sequence analysis, were highly diverse. For some major groups, like flavobacteria and planctomyces, the distinctive sizes of their 5S rRNAs allowed the assignment of strains to these groups. More specific taxonomic information was gained from analysis of the tRNA part of the profile. Strains could be grouped as species and genera due to species- and genus-specific tRNA bands. From an evolutionary point of view, this order found in the total tRNA pool of eubacteria could indicate that cytoplasmic tRNA evolution reflects ribosomal RNA evolution. Given the universality of tRNAs, it is to be expected that their electrophoretic mobility profiles may serve as a convenient RNA fingerprint for defining bacterial species operationally and for identifying new genotypes by differing patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call