Abstract

Transfer RNA-derived small RNA (tsRNA)s are novel non-coding RNAs, expressed in a variety of tissues and organs. Two subtypes of tsRNAs have been reported: tRNA-derived stress-induced RNA (tiRNA)s and tRNA-derived fragment (tRF)s. tsRNAs have been reported to play essential roles and possess different biological functions in a variety of physiological activities. Recently, tsRNAs have been implicated in a large number of diseases, such as cancers (including breast cancer, ovarian cancer, lung cancer, prostate cancer, colorectal cancer, etc.), neurological disorders, viral infections, metabolic diseases and angiogenesis-related diseases. Although the biological functions of tsRNAs are still poorly understood, correlations between dysregulated tsRNA expression and disease development have been recently reported. Additionally, their capabilities as potential biomarkers for disease diagnosis and prognosis have been revealed in clinical studies. In this review, we summarize the current knowledge of tsRNAs, and discuss their potential clinical applications as biomarkers in different diseases. Although the regulation of tsRNAs is similar to miRNAs in regards to the related physiological and pathological processes, the higher stability and expression levels of tsRNAs place them as ideal biomarkers for the diagnosis and prognosis in cancer and other diseases. Therefore, it is worth to verify the possibility and reliability of these reported tsRNAs as potential biomarkers for clinical applications in disease diagnosis and prognosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.