Abstract
Gastric cancer (GC) is one of the most common gastrointestinal tumors. As a newly discovered type of non-coding RNAs, transfer RNA (tRNA)-derived small RNAs (tsRNAs) play a dual biological role in cancer. Our previous studies have demonstrated the potential of tRF-23-Q99P9P9NDD as a diagnostic and prognostic biomarker for GC. In this work, we confirmed for the first time that tRF-23-Q99P9P9NDD can promote the proliferation, migration, and invasion of GC cells in vitro. The dual luciferase reporter gene assay confirmed that tRF-23-Q99P9P9NDD could bind to the 3' untranslated region (UTR) site of acyl-coenzyme A dehydrogenase short/branched chain (ACADSB). In addition, ACADSB could rescue the effect of tRF-23-Q99P9P9NDD on GC cells. Next, we used Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to find that downregulated ACADSB in GC may promote lipid accumulation by inhibiting fatty acid catabolism and ferroptosis. Finally, we verified the correlation between ACADSB and 12 ferroptosis genes at the transcriptional level, as well as the changes in reactive oxygen species (ROS) levels by flow cytometry. In summary, this study proposes that tRF-23-Q99P9P9NDD may affect GC lipid metabolism and ferroptosis by targeting ACADSB, thereby promoting GC progression. It provides a theoretical basis for the diagnostic and prognostic monitoring value of GC and opens up new possibilities for treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.